PROBLEM SET 4

YIHANG ZHU

Exercise 0.1. Let $V \subset \mathbb{A}_{k}^{n}$ be an affine algebraic set. Let $I(V / k):=I(V) \cap k[X]$. Show that $V=V(J)$ where for some subset $J \subset k[X]$ if and only if $I(V / k) \bar{k}[X]=$ $I(V)$.

Exercise 0.2. Let $f \in \bar{k}\left[X_{1}, \cdots, X_{n}\right]$. Show that $V=V(f) \subset \mathbb{A}^{n}$ is a variety if and only if f is irreducible.

Exercise 0.3. Let $V \subset \mathbb{P}_{k}^{n}$ be a projective variety. Let $f: V \rightarrow \bar{k}$ be a function such that for all $i,\left.f\right|_{V \cap U_{i}}: V \cap U_{i} \rightarrow \bar{k}$ is given by an element in $\bar{k}\left[V \cap U_{i}\right]$. Show that f has to be a constant function.
Exercise 0.4. Let $V=V\left(Y^{2} Z-X^{3}+X^{2} Z\right)$. This is the projective closure of the affine curve $Y^{2}=X^{3}-X^{2}$ that is singular at $X=Y=0$. Let $F=[X / Y: 1]$: $V \rightarrow \mathbb{P}_{k}^{1}$. Then F is not regular at $[0: 0: 1]$.
Exercise 0.5. Let $V=\mathbb{P}_{k}^{2}$. Consider the rational map $F=[X / Y: 1]: V \rightarrow \mathbb{P}_{k}^{1}$. It is not regular at $p=[0: 0: 1]$. Hint: Suppose F is regular at p. Then for any curve C through p, F restricts to a rational map $C \rightarrow \mathbb{P}^{1}$ that is also regular at p, with its value at p the same as $F(p)$. Consider the curves $X=Y^{2}, Y=X^{2}$.

